Process simulation as a domain-specific OPC UA information model

Paolo Greppi, consultant, 3iP, Italy

ESCAPE 20
June 6th to 9th 2010
Ischia, Naples (Italy)
Presentation outline

- Classic OPC
- OPC Unified Architecture
- Soft-sensor based on OPC UA
- OPC UA as a challenge to CAPE-OPEN?
Where we are

- Classic OPC
- OPC Unified Architecture
- Soft-sensor based on OPC UA
- OPC UA as a challenge to CAPE-OPEN?
Protocols & interfaces

- 4-20 mA
- SMART
- HART
- Ethernet
- Sattbus
- Modbus
- Profibus / Fieldbus
- EDAS
- CIP
- CIM-IO
- IEC 870-5-101/104
- http / https
- ODBC
- WCF
- Classic OPC
Class OPC

- Classic OPC is a set of de-facto standards
 - http://www.opcfoundation.org

- For interfacing between process automation (SCADA, PLC, DCS) and the rest of IT

- Time span: 1996 – 2005

- Based on COM technology (Microsoft, 1993)
Resulting industrial IT architecture

From an IBM whitepaper
Where we are

- Classic OPC
- OPC Unified Architecture
- Soft-sensor based on OPC UA
- OPC UA as a challenge to CAPE-OPEN?
OPC UA (Unified Architecture)

- OPC UA (Unified Architecture) is a single de-facto standard, evolution of Classic OPC
 http://www.opcfoundation.org

- Time span: 2006 - ...
 - Based on SOA
 - Platform-independent (non-Microsoft specific)
 - Object-oriented
 - Semantic: domain-specific information models
OPC UA: platform-independent

Profiles used to define subsets of functionality for different use cases

Standard internet protocols allow cross-platform communication

Multiple OPC APIs
• C/C++
• JAVA
• Microsoft .NET

From an OPC Foundation presentation
OPC UA object oriented: types and instances

From an OPC Foundation presentation
OPC UA: architecture

Vendor Information Model

Domain-specific Information Model

OPC UA Base Services

From an OPC Foundation presentation
Domain-specific information models for:

1. device information
2. analyser devices
3. plant operation and maintenance
4. batch control
5. PLC programming

• process simulation capabilities?
Where we are

- Classic OPC
- OPC Unified Architecture
- Soft-sensor based on OPC UA
- OPC UA as a challenge to CAPE-OPEN?
Soft sensors

Soft-sensors = replace real sensors with virtual, calculated results

- **Model-driven** - first principle models
- **Data-driven** - based on raw data manipulation
 - Principle Component Analysis (PCA)
 - Partial Least Squares (PLS)
 - Artificial Neural Networks (ANN).
The soft-sensor of the example

- Gas-chromatograph measures the composition of a material stream composed of short-chain hydrocarbons

- Soft-sensor computes:
 - Lower / higher heating value and Wobbe-Index;
 - LEL / UEL (lower and upper explosive limits) and LOC (limiting oxygen content);
 - Density, dew- and bubble-point with an equation of state specific for Natural Gas (GERG-2004)
LIBPF: LIBrary for Process Flowsheeting

- Modular Software Development Kit (SDK) for process flowsheeting

- Object-oriented C++ library:
 - Components, physical properties, phases, streams, unit operations and flowsheets
 - Tools: solvers, input/output, object persistency, communication interfaces
Classic OPC soft sensor

- OPC DA 2.0.4 client
- Placeholder tags have to be defined in the OPC server
- Configuration via XML file
- Start / stop as an operating system service
OPC UA process simulation information model

OPC UA node types from LIBPF objects

- FontWeight
- modelBase
- edgeBase
- vertexBase
- stream
- stream_VL
- stream_VL_eos<pengrobinson>
- stream_VL_eos<pcsaft>
- stream_VL_eos<gerg2004>
OPC UA soft sensor prototype

LIBPF objects are exposed as OPC UA nodes at runtime

Flowsheet object instance
Method can be actioned on the object
Unit operation object instance
Quantity with engineering unit object instance
OPC UA soft sensor features

- Runs on both Windows and Linux
- Could even be integrated directly into the device (gas-chromatograph, fiscal meter)
- No configuration files
- The configuration can be performed using any 3rd party OPC UA client, thanks to the discovery and browsing capabilities
Where we are

- Classic OPC
- OPC Unified Architecture
- Soft-sensor based on OPC UA
- OPC UA as a challenge to CAPE-OPEN?
CAPE-OPEN vs. OPC UA

<table>
<thead>
<tr>
<th>Item</th>
<th>CAPE-OPEN</th>
<th>OPC UA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Standards for interfacing process modelling software components developed specifically for the design and operation of chemical processes</td>
<td>secure and reliable cross platform framework for access to real time and historical data and events</td>
</tr>
<tr>
<td>Embedding</td>
<td>in-process</td>
<td>out-of-process</td>
</tr>
<tr>
<td>Protocol scope</td>
<td>Local, LAN</td>
<td>Local, LAN, WAN</td>
</tr>
<tr>
<td>Supported operating systems</td>
<td>Windows</td>
<td>Windows, Embedded Windows XP, QNX, Linux</td>
</tr>
<tr>
<td>Typical use</td>
<td>Unit operation interfacing</td>
<td>Flowsheet or whole-model interfacing</td>
</tr>
<tr>
<td>Typical application</td>
<td>Interoperability between different process simulators</td>
<td>On-line modeling applications</td>
</tr>
</tbody>
</table>
Applicability of OPC UA to CAPE

- OK to transfer 10000 variables that require an out-of-process computation of 500 ms in one batch: communication overhead < 10%

- The function call grouping should be implemented in the host (feasible for simultaneous solution algorithms):
 - Simulation executive groups calls to individual unit operation models
 - Unit operation model groups calls to physical property subroutines

This slide incorporates comments from Jasper van Baten and William M. Barrett Jr.
Preferred OPC UA on-line modeling applications

- Soft-sensors
- Advanced Process Control (APC)
- Model predictive control (MPC)
- Plant-wide mass balance reconciliation
- Operator Training (OTS)
Future work for the community

- Agree on a domain-specific information model for process modeling on top of OPC Unified Architecture stack:
 - Process modeling objects: Components, phases, streams, unit operations
 - CAPE applications
 - On-line modeling applications
Visit www.libpf.com!